Current status of dense ceramic membranes for hydrogen separation.
We have developed cermet membranes that nongalvanically separate hydrogen from gas mixtures. The highest measured hydrogen flux was 16.2 cm{sup 3} (STP)/min-cm{sup 2} for an ANL-3a membrane at 900 C. For ANL-3 membranes with thickness of 0.04-0.5 mm, permeation rate is limited by the bulk diffusion of hydrogen through the metal phase. The effect of hydrogen partial pressure on permeation rate confirmed this conclusion and suggested that higher permeation rates may be obtained by decreasing the membrane thickness. Permeation rate in a syngas atmosphere for times up to 190 h showed no degradation in performance, which indicates that ANL-3 may be suitable for long-term, practical hydrogen separation.
- Research Organization:
- Argonne National Lab., IL (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- W-31109-ENG-38
- OSTI ID:
- 793066
- Report Number(s):
- ANL/ET/CP-106963
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dense cermet membranes for hydrogen separation.
Development of dense ceramic membranes for hydrogen separation.