Tritium Removal from Codeposits on Carbon Tiles by a Scanning Laser
- Princeton Plasma Physics Laboratory
A novel method for tritium release has been demonstrated on codeposited layers on graphite and carbon-fiber-composite tiles from the Tokamak Fusion Test Reactor (TFTR). A scanning continuous wave Nd laser beam heated the codeposits to a temperature of 1200-2300 degrees C for 10 to 200 milliseconds in an argon atmosphere. The temperature rise of the codeposit was significantly higher than that of the manufactured tile material (e.g., 1770 degrees C cf. 1080 degrees C). A major fraction of tritium was thermally desorbed with minimal change to the surface appearance at a laser intensity of 8 kW/cm(superscript ''2''), peak temperatures above 1230 degrees C and heating duration 10-20 milliseconds. In two experiments, 46% and 84% of the total tritium was released during the laser scan. The application of this method for tritium removal from a tokamak reactor appears promising and has significant advantages over oxidative techniques.
- Research Organization:
- Princeton Plasma Physics Lab., NJ (US)
- Sponsoring Organization:
- USDOE Office of Science (US)
- DOE Contract Number:
- AC02-76CH03073
- OSTI ID:
- 788203
- Report Number(s):
- PPPL-3603
- Country of Publication:
- United States
- Language:
- English
Similar Records
Tritium Removal by Laser Heating and Its Application to Tokamaks
Tritium Removal by Laser Heating and Its Application to Tokamaks