Isentropic Compression Experiments on the Z Accelerator
- Sandia National Laboratories
This paper provides a brief review of experimental techniques for producing dynamic isentropic compression of samples to pressures of several hundred GPa. Traditional gun launch techniques include use of buffer plates, such as fused silica, that exhibit negative curvature to their stress-strain response and graded-density impactors. Graded-density impactors have been used to study isentropic compression of specimens to pressures exceeding 2 Mbar on high-impedance materials. A recent development includes the use of the Sandia Z Accelerator to produce magnetic compression in planar specimens to pressures of a few hundred kbar over time scales of 100 ns. These techniques have been successfully applied to isentropic compression of iron to 300 kbar and copper to 130 kbar. The iron results indicate that it is possible to study the polymorphic phase change that occurs at 130 kbar and also the kinetic properties of the transformation. The copper results indicate that with further improvements in progress it should be possible to measure continuous isentropic compression curves in materials of interest to pressures exceeding 1 Mbar. The Z accelerator is limited to peak currents of about 20 MA. By reconfiguring the anode-cathode geometry it should be possible to obtain constant current density and thus driving pressure to about 3 Mbar. The next generation accelerator referred to as ZX, which is being proposed will have the capability to generate currents to 50 MA and resulting peak pressures to 15 Mbar.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 7876
- Report Number(s):
- SAND99-0689C
- Country of Publication:
- United States
- Language:
- English
Similar Records
Insentropic compression of solid using pulsed magnetic loading
Isentropic compression experiments on the Sandia Z accelerator