Initial field test of High-Energy Corona process for treating a contaminated soil-offgas stream
The High-Energy Corona (HEC) technology for treating process offgases has been under development at Pacific Northwest Laboratory (PNL) since 1991. The HEC process uses high-voltage electrical discharges in air to ionize the air, forming a low-temperature plasma that would be expected to destroy a wide variety of organic compounds in air. The plasma contains strong oxidants, possibly including hydroxyl radicals, hydroperoxy radicals, superoxide radicals, various excited as well as ionized forms of oxygen, high-energy electrons, and ultraviolet (UV) light. Because the high-voltage plasma is produced near ambient temperatures and pressures, yet exhibits extremely rapid destruction kinetics with relatively low power requirements, the HEC technique appears promising as a low-cost treatment technique (Virden et al. 1992). As part of the Volatile Organic Compound (VOC) Nonarid Integrated Demonstration (ID) at the DOE Savannah River Site, research activities were initiated in December 1991 to develop a prototype HEC process for a small-scale field demonstration to treat a soil-offgas stream contaminated with trichloroethylene (TCE) and perchloroethylene (PCE) at varying concentrations. Over an 18-month period, the HEC technology was developed on a fast track, through bench and pilot scales into a trailer-mounted system that was tested at the Nonarid ID. Other national laboratories, universities, and private companies have also participated at the Nonarid ID to demonstrate a number of conventional, emerging and innovative approaches for treating the same soil-offgas stream.
- Research Organization:
- Pacific Northwest Lab., Richland, WA (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC06-76RL01830
- OSTI ID:
- 78719
- Report Number(s):
- PNL--9224; ON: DE95010721
- Country of Publication:
- United States
- Language:
- English
Similar Records
Offgas treatment
Wet offgas scrubbing for radwaste thermal processing