Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A Mixed {alpha}/{beta} Superstructure in NASICON Ionic Conductors: Neutron Diffraction Study of Li

Journal Article · · Journal of Solid State Chemistry
The lithium conductors Li{sub 2}FeTi(PO{sub 4}){sub 3} and Li{sub 2}FeZr(PO{sub 4}){sub 3}, synthesized by solid-state reaction and characterized by X-ray powder diffractometry, were studied structurally at room temperature by neutron powder diffraction at high resolution (HRPD, ISIS Facility, U.K.). By trial-and-error and Rietveld refinements (R{sub p}=0.111, R(F{sup 2})=0.112), the first compound (orthorhombic Pbca, Z=8; a=8.5515(1), b=8.6229(1), c=23.9116(3) {angstrom}) was shown to have a complex superstructure sharing features of both the {alpha} and {beta} NASICON-type phases of LiZr{sub 2}(PO{sub 4}){sub 3}. Four (001) layers of PO{sub 4} and (Fe, Ti)O{sub 6} polyhedra are present per unit-cell, and they are related both by -1 inversion centers ({alpha} structure) and by a glide planes ({beta} structure). Ti{sup 4+} and Fe{sup 3+} order in the two interlayer regions, respectively. Owing to the structure complexity, only half of the lithium atoms could be refined in tetrahedral coordination with < Li-O > =1.99 {angstrom}. Li{sub 2}FeZr(PO{sub 4}){sub 3} (orthorhombic Pbna, Z=4; a=8.70559(8), b=8.78572(9), c=12.2202(1) {angstrom}) proved to be similar to {beta}-LiZr2(PO4)3; however, by Fourier synthesis and Rietveld refinement (R{sub p}=0.0618, R(F{sup 2})=0.0574) Li was located in a fully ordered tetrahedral configuration with < Li-O >=2.01 {angstrom}, instead of being disordered as in the phase of LiZr{sub 2}(PO{sub 4}){sub 3}.
Research Organization:
Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano (IT)
Sponsoring Organization:
Ministero per l'Universita e per la Ricerca Scientifica e Tecnologica (Italy); Consiglio Nazionale delle Ricerche (Italy) (US)
OSTI ID:
784083
Journal Information:
Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Journal Issue: 2 Vol. 156; ISSN 0022-4596; ISSN JSSCBI
Country of Publication:
United States
Language:
English