NEXT-GENERATION NUMERICAL MODELING: INCORPORATING ELASTICITY, ANISOTROPY AND ATTENUATION
A new effort has been initiated between the Department of Energy (DOE) and the Society of Exploration Geophysicists (SEG) to investigate what features the next generation of numerical seismic models should contain that will best address current technical problems encountered during exploration in increasingly complex geologies. This collaborative work is focused on designing and building these new models, generating synthetic seismic data through simulated surveys of various geometries, and using these data to test and validate new and improved seismic imaging algorithms. The new models will be both 2- and 3-dimensional and will include complex velocity structures as well as anisotropy and attenuation. Considerable attention is being focused on multi-component acoustic and elastic effects because it is now widely recognized that converted phases could play a vital role in improving the quality of seismic images. An existing, validated 3-D elastic modeling code is being used to generate the synthetic data. Preliminary elastic modeling results using this code are presented here along with a description of the proposed new models that will be built and tested.
- Research Organization:
- Los Alamos National Lab., NM (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 776109
- Report Number(s):
- LA-UR-01-1400
- Country of Publication:
- United States
- Language:
- English
Similar Records
3-D Numerical Modeling of a Complex Salt Structure
Parallel acoustic wave propagation and generation of a seismic dataset