skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Savannah River Site Bagless Transfer Technology Applied at Hanford

Abstract

A ''bagless transfer'' process was developed at the Savannah River Site (SRS) to remove radioactive materials from glovebox enclosures for long-term storage in conformance with DOE Standard 3013. This process, unlike the more conventional ''bag-out'' process, produces an all-metal, helium-filled, welded storage container that does not contain materials subject to radiolytic decomposition. A Bagless Transfer System (BTS), utilizing this bagless transfer process, has been in service at SRS since August 1997. It is a semi-automated system that has proven to be very reliable during its three years of operation.The Plutonium Finishing Plant (PFP) at Hanford has a similar need for long-term storage of radioactive materials. The successful operation of the Savannah River Site BTS led to the selection of the same technology to fulfill the packaging need at Hanford. However, there are a number of differences between the existing SRS BTS and the system currently in operation at Hanford. These differences will be discussed in this paper. Additionally, a system is necessary to produce another all-metal, welded container into which the container produced by the BTS can be placed. This container must be in conformance with the criteria specified in DOE-STD-3013 for an outer container. SRS Engineers are developing amore » system (outer container welder), based on the tungsten inert gas (TIG) welding equipment used in the BTS, to produce this outer container.« less

Authors:
Publication Date:
Research Org.:
Savannah River Site (US)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
774277
Report Number(s):
WSRC-MS-2000-00529
TRN: US0100894
DOE Contract Number:
AC09-96SR18500
Resource Type:
Conference
Resource Relation:
Conference: American Nuclear Society 9th Topical Meeting on Robotics and Remote Systems, Seattle, WA (US), 03/04/2001--03/08/2001; Other Information: PBD: 31 Jan 2001
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; CONTAINERS; PACKAGING; PLUTONIUM; RADIOACTIVE MATERIALS; GAS TUNGSTEN-ARC WELDING; REMOTE HANDLING EQUIPMENT; DESIGN; PERFORMANCE

Citation Formats

Wong, J.W. Savannah River Site Bagless Transfer Technology Applied at Hanford. United States: N. p., 2001. Web.
Wong, J.W. Savannah River Site Bagless Transfer Technology Applied at Hanford. United States.
Wong, J.W. Wed . "Savannah River Site Bagless Transfer Technology Applied at Hanford". United States. doi:. https://www.osti.gov/servlets/purl/774277.
@article{osti_774277,
title = {Savannah River Site Bagless Transfer Technology Applied at Hanford},
author = {Wong, J.W.},
abstractNote = {A ''bagless transfer'' process was developed at the Savannah River Site (SRS) to remove radioactive materials from glovebox enclosures for long-term storage in conformance with DOE Standard 3013. This process, unlike the more conventional ''bag-out'' process, produces an all-metal, helium-filled, welded storage container that does not contain materials subject to radiolytic decomposition. A Bagless Transfer System (BTS), utilizing this bagless transfer process, has been in service at SRS since August 1997. It is a semi-automated system that has proven to be very reliable during its three years of operation.The Plutonium Finishing Plant (PFP) at Hanford has a similar need for long-term storage of radioactive materials. The successful operation of the Savannah River Site BTS led to the selection of the same technology to fulfill the packaging need at Hanford. However, there are a number of differences between the existing SRS BTS and the system currently in operation at Hanford. These differences will be discussed in this paper. Additionally, a system is necessary to produce another all-metal, welded container into which the container produced by the BTS can be placed. This container must be in conformance with the criteria specified in DOE-STD-3013 for an outer container. SRS Engineers are developing a system (outer container welder), based on the tungsten inert gas (TIG) welding equipment used in the BTS, to produce this outer container.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jan 31 00:00:00 EST 2001},
month = {Wed Jan 31 00:00:00 EST 2001}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Traditional methods of removing plutonium from process gloveboxes in preparation for packaging involves the use of bagout procedures utilizing plastic bags, an organic material not allowed in storage containers per the new DOE 3013 long term storage criteria. Engineers at the Savannah River Site have developed a system for removing plutonium from a glovebox directly into an all metal, welded, leaktight container free of external contamination. The process, known as bagless transfer, utilizes a Tungsten Inert Gas (TIG) welding process to fuse and separate a transfer canister from the glovebox environment while maintaining glovebox and canister integrity. A semi-automated prototypemore » system has been demonstrated at the Savannah River Site and engineers are making preparations to demonstrate the system in radioactive operation in the site`s FB Line Plutonium Facility.« less
  • Conventional glovebox techniques for handling radioactive material include the use of plastic sleeving for ''bagging out'' material in order to remove it from the glovebox. This method has been used for many years, and has proven very effective when implemented by trained operators. One drawback to this method is that it is not suitable for removal of material for long-term storage, due to radiolytic decomposition of the plastic. In order to comply with long term storage criteria, engineers at the Savannah River Site developed an alternative process for removal of radioactive material known as ''bagless transfer''.
  • With the end of the Cold War buildup, the U.S. Department of Energy (DOE) complex is shifting its focus from producing nuclear weapons to cleaning up, packaging, and storing excess materials and associated by-products. Old transfer and interim storage methods are now being reevaluated in the context of the recent long-term storage criteria. One of the methods used for the interim storage of plutonium/uranium products in the past involved the use of a bagout technique. In reviewing interim storage containers, it was found that the plastic bags used in this technique are not suitable for use inside long-term storage containersmore » because they release gases that cause container pressurization and associated problems. As the DOE synthesized its long-term plutonium storage criteria, plastic bags and other organics were banned from use in future storage processes to prevent these types of problems. In response to these problems and the subsequent long-term storage criteria, the DOE sites began to pursue alternate material transferral methods.« less
  • The Waste Receiving and Processing Facility, under construction at in south-central Washington State. The facility is scheduled to begin operation in 1996. Designed as a joint venture by Raytheon Engineers and Constructors and British Nuclear Fuels, Ltd. (BNFL), its mission is to annually receive more than 6,800 55-gallon drums of both newly generated and retrieved contact-handled solid waste and prepare them for certification and disposal. While 3,800 drums will require only waste acceptance criteria certification using the WRAP-1 NDA/NDE functions, 3,000 drums also will need to be repackaged. The WRAP-1 Facility will use two separate glovebox lines to annually repackagemore » more than 1,500 drums each of transuranic (TRU) and low-level waste (LLW) to meet current disposal guidelines. When complete, WRAP-1 will be the first facility of its kind to perform these tasks on a production scale. Completing this challenging task is made possible by using large-container (drum) bagless transfer technology and state-of-the-art glovebox design.« less
  • Fifty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. These operations impacted air, soil, groundwater, ecology and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a strong commitment to environmental stewardship. The site boasts many environmental firsts. Notably, SRS was the first major DOE facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early example sets the stage for subsequent efforts. Since that time,more » the scientists and engineers at SRS have proactively identified environmental problems as they occurred and have skillfully developed elegant and efficient solutions.« less