RATE-ADJUSTMENT ALGORITHM FOR AGGREGATE TCP CONGESTION CONTROL
The TCP congestion-control mechanism is an algorithm designed to probe the available bandwidth of the network path that TCP packets traverse. However, it is well-known that the TCP congestion-control mechanism does not perform well on networks with a large bandwidth-delay product due to the slow dynamics in adapting its congestion window, especially for short-lived flows. One promising solution to the problem is to aggregate and share the path information among TCP connections that traverse the same bottleneck path, i.e., Aggregate TCP. However, this paper shows via a queueing analysis of a generalized processor-sharing (GPS) queue with regularly-varying service time that a simple aggregation of local TCP connections together into a single aggregate TCP connection can result in a severe performance degradation. To prevent such a degradation, we introduce a rate-adjustment algorithm. Our simulation confirms that by utilizing our rate-adjustment algorithm on aggregate TCP, connections which would normally receive poor service achieve significant performance improvements without penalizing connections which already receive good service.
- Research Organization:
- Los Alamos National Lab., NM (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 768776
- Report Number(s):
- LA-UR-00-4220
- Country of Publication:
- United States
- Language:
- English
Similar Records
Evaluation of TCP congestion control algorithms.
Improved virtual queuing and dynamic EPD techniques for TCP over ATM