Laser Injection Optics for High-Intensity Transmission in Multimode Fibers
- Sandia National Laboratories
An increasing number of applications are requiring fiber transmission of high-intensity laser pulses. The authors particular interests have led them to examine carefully the fiber transmission of Q-switched pulses from multimode Nd:YAG lasers at their fundamental wavelength. The maximum pulse energy that can be transmitted through a particular fiber is limited by the onset of laser-induced breakdown and damage mechanisms. Laser breakdown at the fiber entrance face is often the first limiting process to be encountered, but other mechanisms can result in catastrophic damage at either fiber face, within the initial entry segment of the fiber, and at other internal sites along the fiber path. In the course of their studies they have examined a number of factors that govern the relative importance of different mechanisms, including laser characteristics, the design and alignment of injection optics, fiber end-face preparation, and fiber routing. The present study emphasizes the important criteria for injection optics in high-intensity fiber transmission, and illustrates the opportunities that now exist for innovative designs of optics to meet these criteria. The consideration of diffractive optics to achieve desired injection criteria began in 1993, and they have evaluated a progression of designs since that time. In the present study, two recent designs for injection optics are compared by testing a sufficient number of fibers with each design to establish statistics for the onset of laser-induced breakdown and damage. In this testing they attempted to hold constant other factors that can influence damage statistics. Both designs performed well, although one was less successful in meeting all injection criteria and consequently showed a susceptibility to a particular damage process.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 761895
- Report Number(s):
- SAND2000-0251C
- Country of Publication:
- United States
- Language:
- English
Similar Records
Very high intensity fiber transmission systems
Effects of Accelerated Aging on Fiber Damage Thresholds