Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A Mechanistic Investigation of Gelation. The Sol-Gel Polymerization of Bridged Silsesquioxane Monomers

Journal Article · · Accounts of Chemical Research
OSTI ID:759982

The study of a homologous series of silsesquioxane monomers has uncovered striking discontinuities in gelation behavior. An investigation of the chemistry during the early stages of the polymerization has provided a molecular basis for these observations. Monomers containing from one to four carbon atoms exhibit a pronounced tendency to undergo inter or intramolecular cyclization. The cyclic intermediates have been characterized by {sup 29}Si NMR, chemical ionization mass spectrometry and isolation from the reaction solution. These carbosiloxanes are local thermodynamic sinks that produce kinetic bottlenecks in the production of high molecular weight silsesquioxanes. The formation of cyclics results in slowing down or in some cases completely shutting down gelation. An additional finding is that the cyclic structures are incorporated intact into the final xerogel. Since cyclization alters the structure of the building block that eventually makes up the xerogel network, it is expected that this will contribute importantly to the bulk properties of the xerogel as well.

Research Organization:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
759982
Report Number(s):
SAND2000-1896J
Journal Information:
Accounts of Chemical Research, Journal Name: Accounts of Chemical Research
Country of Publication:
United States
Language:
English