Modeling of Present and Proposed Magnetized Target Fusion Experiments
- Los Alamos National Laboratory
In the concept known as Magnetized Target Fusion (MTF) in the United States and Magnitnoye Obzhatiye (MAGO) in Russia, a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions. Because the magnetic field suppresses losses by electron thermal conduction in the fuel during the target implosion heating process, the compression may be over a much longer time scale than in traditional inertial confinement fusion. Hence ''liner-on-plasma'' compressions, magnetically driven using relatively inexpensive electrical pulsed power, may be practical. One candidate target plasma known as ''MAGO'' was originated in Russia and is now being jointly developed by the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and Los Alamos National Laboratory (LANL). Other possible target plasmas now under investigation at LANL include wall-supported deuterium-fiber-initiated Z-pinches and compact toroids. Detailed computational modeling is being done of such target plasmas. In addition, liner-on-plasma compressions of such target plasmas to fusion conditions are being computationally modeled, and experimental and computational investigation of liner implosions suitable for MTF is continuing. Results will be presented.
- Research Organization:
- Los Alamos National Lab., NM (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 759423
- Report Number(s):
- LA-UR-98-4615
- Country of Publication:
- United States
- Language:
- English
Similar Records
Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)
Computational investigation of plasma-wall interaction issues in magnetized target fusion