BEHAVIOR OF EXCESS ELECTRONS IN SUPERCRITICAL FLUIDS - ELECTRON ATTACHMENT
- BROOKHAVEN NATIONAL LABORATORY
The behavior of excess electrons in supercritical ethane was investigated by measuring mobility and reaction rates. Mobilities were measured by means of a time-of-flight method at 306--320K as a function of pressure. Mobility values decreased at all temperatures with increasing pressure, but showed a small minimum or a shoulder at the pressure where the compressibility {chi}{sub T} has a peak. Electron attachment to CO{sub 2}, NO, pyrimidine and C{sub 2}F{sub 4} over the same temperature range was studied as a function of pressure. Both attachment rate constants k{sub a} for NO and C{sub 2}F{sub 4}, and equilibrium constants K({double_bond}k{sub a}/k{sub d}) for CO{sub 2} and pyrimidine increased sharply at pressures of {chi}{sub T} peaks. Activation volumes V{sub a}* and reaction volumes {Delta}V{sub r} are very large and negative in the critical region. The volume change is mainly due to electrostriction around ions formed. The results are compared to volume changes predicted by, a compressible continuum model.
- Research Organization:
- Brookhaven National Lab., Upton, NY (US)
- Sponsoring Organization:
- USDOE Office of Energy Research (ER) (US)
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 759001
- Report Number(s):
- BNL--66560; KC030101; KC030101
- Country of Publication:
- United States
- Language:
- English
Similar Records
Thermodynamics of electron attachment to pyrimidine and styrene in supercritical ethane
Electron attachment to CO{sub 2} in supercritical ethane