Fracture toughness of Alloy 690 and EN52 weld in air and water
- Bettis Atomic Power Laboratory
The effect of low and high temperature water with high hydrogen on the fracture toughness of Alloy 690 and its weld, EN52, was characterized using elastic-plastic J{sub IC} methodology. While both materials display excellent fracture resistance in air and elevated temperature (>93 C) water, a dramatic degradation in toughness is observed in 54 C water. The loss of toughness is associated with a hydrogen-induced intergranular cracking mechanism where hydrogen is picked up from the water. Comparison of the cracking behavior in low temperature water with that for hydrogen-precharged specimens tested in air indicates that the critical local hydrogen content required to cause low temperature embrittlement is on the order of 120 to 160 ppm. Loading rate studies show that the cracking resistance is significantly improved at rates above ca. 1000 MPa{radical}m/h because there is insufficient time to produce grain boundary embrittlement. Electron fractographic examinations were performed to correlate cracking behavior with microstructural features and operative fracture mechanics.
- Research Organization:
- Bettis Atomic Power Lab., West Mifflin, PA (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC11-98PN38206
- OSTI ID:
- 755362
- Report Number(s):
- B-T-3265
- Country of Publication:
- United States
- Language:
- English
Similar Records
Fracture behavior of nickel-based alloys in water
Effect of water on mechanical properties and stress corrosion behavior of alloy 600, alloy 690, EN82H welds, and EN52 welds