skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunable composite membranes for gas separations

Technical Report ·
DOI:https://doi.org/10.2172/754378· OSTI ID:754378

The use of membrane technology for gas separations offers significant thermodynamic and economic advantages over distillation processes. Target separations of importance to the coal and energy fields include N{sub 2}/O{sub 2}, H{sub 2}S/syngas and CO{sub 2}/CH{sub 4}. Current strategies for improving these separations are largely directed towards processable polymers with thin (< 500 {angstrom}) skins. Unfortunately most polymeric materials that provide commercially viable permeation rates exhibit poor selectivities and vice versa and there are inherent limitations in gas permeability/permselectivity for pure polymers. The strategy relies on modification of composite membranes, preferably in situ, to enhance the permselectivity while maintaining acceptable permeabilities. The composites consist of electroactive polymers (which can be switched from rubbery to glassy), filled with selective absorbents (zeolites) which are impregnated with metals or catalysts to effect facilitated transport. The project is multifaceted and involves the efforts of a polymer synthesis group, a microporous materials group, a microscopy group and a permeability measurements group, all working in concert. This final report summarizes the results of the efforts on the project.

Research Organization:
Federal Energy Technology Center Morgantown (FETC-MGN), Morgantown, WV (United States); Federal Energy Technology Center Pittsburgh (FETC-PGH), Pittsburgh, PA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FG22-94PC94222
OSTI ID:
754378
Report Number(s):
DE-FG22-94PC94222-18; TRN: AH200012%%8
Resource Relation:
Other Information: PBD: 1 May 1999
Country of Publication:
United States
Language:
English