How to recycle asbestos containing materials (ACM)
Conference
·
OSTI ID:753909
The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminated ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.
- Research Organization:
- Savannah River Site (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC09-96SR18500
- OSTI ID:
- 753909
- Report Number(s):
- WSRC-MS-2000-00194,Rev.0
- Country of Publication:
- United States
- Language:
- English
Similar Records
Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options
Method for dissolution and stabilization of silica-rich fibers
Method for dissolution and stabilization of silica-rich fibers
Conference
·
Mon Apr 10 00:00:00 EDT 2000
·
OSTI ID:753906
Method for dissolution and stabilization of silica-rich fibers
Patent
·
Tue Dec 31 23:00:00 EST 1996
·
OSTI ID:871224
Method for dissolution and stabilization of silica-rich fibers
Patent
·
Mon Nov 10 23:00:00 EST 1997
·
OSTI ID:563665