Sol-gel chemistry by ring-opening polymerization
- Sandia National Laboratories
Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. The authors have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits them to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solvent is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which they have successfully demonstrated.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 751182
- Report Number(s):
- SAND2000-0350C
- Country of Publication:
- United States
- Language:
- English
Similar Records
Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes
Shrinkage and recyclability of poly(1,2-ethylene-bis(dimethylsiloxane))