Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fundamental study of the effect of high-salinity brines on the friction and wear properties of stainless steels

Conference ·
OSTI ID:7369474

Friction and corrosive wear experiments were performed in a geothermal-geopressured brine and in a 3% NaCl solution in a friction and wear electrolytic cell. The formation of a passive film on 304 stainless steel has a beneficial effect on the magnitude of the coefficient of friction. When pits are electrochemically introduced in the passive film, the friction coefficient becomes even lower than the passive coefficient of friction in the 3% NaCl, but does not significantly change for the brine. The effect of corrosive wear on the surface film is more difficult to assess. Auger spectroscopy was performed on wear surfaces (subjected to both electrochemical and mechanical action) and non-wear surfaces (subjected only to electrochemical action). The surface films formed in 3% NaCl in the non-wear and wear areas including pits consisted of Cr, Fe and Ni in ratios consistent to the bulk material plus 0. In brine the surface film consists of the same elements as above; however, the surface film associated with the non-wear area and the wear area pit show a Cr depletion. Yet, the wear area film is consistent with bulk as in the case of the 3% NaCl.

Research Organization:
Univ. of Texas, Austin
OSTI ID:
7369474
Report Number(s):
CONF-811026-27; ON: DE82003311
Country of Publication:
United States
Language:
English