Exact solution to a nonlinear Klein--Gordon equation
Journal Article
·
· J. Math. Anal. Appl.; (United States)
OSTI ID:7352591
The nonlinear Klein-Gordon equation delta ..mu.. delta/sub ..mu../PHI + M/sup 2/PHI + lambda/sub 1/ PHI/sup 1-m/ + lambda/sub 2/ PHI/sup 1-2m/ = 0 has the exact formal solution PHI = (u/sup 2m/ - lamdba/sub 1/ u/sup m//(m - 2)M/sup 2/ + lambda/sub 1//sup 2//(m - 2)/sup 2/M/sup 4/ - lambda/sub 2//4(m - 1)M/sup 2/)/sup 1/m/u/sup -1/, m is not equal to 0,1,2, where u and u/sup -1/ are solutions of the linear Klein-Gordon equation. This equation is a simple generalization of the ordinary second order differential equation satisfied by the homogeneous function y = (au/sup m/ + b(uv)/sup m/2/ + cv/sup m/)/sup k/m/, where u and v are linearly independent solutions of y'' + r(x)y' + q(x)y = 0.
- Research Organization:
- Clemson Univ., SC
- OSTI ID:
- 7352591
- Journal Information:
- J. Math. Anal. Appl.; (United States), Journal Name: J. Math. Anal. Appl.; (United States) Vol. 55:1; ISSN JMANA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Distorted black holes of the Einstein-Klein-Gordon system
Final state problem for the cubic nonlinear Klein-Gordon equation
Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions
Journal Article
·
Wed Sep 15 00:00:00 EDT 2004
· Physical Review. D, Particles Fields
·
OSTI ID:20705260
Final state problem for the cubic nonlinear Klein-Gordon equation
Journal Article
·
Thu Oct 15 00:00:00 EDT 2009
· Journal of Mathematical Physics
·
OSTI ID:21294399
Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions
Journal Article
·
Wed Jan 14 23:00:00 EST 2009
· Journal of Mathematical Physics
·
OSTI ID:21175897