Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Exact solution to a nonlinear Klein--Gordon equation

Journal Article · · J. Math. Anal. Appl.; (United States)
OSTI ID:7352591
The nonlinear Klein-Gordon equation delta ..mu.. delta/sub ..mu../PHI + M/sup 2/PHI + lambda/sub 1/ PHI/sup 1-m/ + lambda/sub 2/ PHI/sup 1-2m/ = 0 has the exact formal solution PHI = (u/sup 2m/ - lamdba/sub 1/ u/sup m//(m - 2)M/sup 2/ + lambda/sub 1//sup 2//(m - 2)/sup 2/M/sup 4/ - lambda/sub 2//4(m - 1)M/sup 2/)/sup 1/m/u/sup -1/, m is not equal to 0,1,2, where u and u/sup -1/ are solutions of the linear Klein-Gordon equation. This equation is a simple generalization of the ordinary second order differential equation satisfied by the homogeneous function y = (au/sup m/ + b(uv)/sup m/2/ + cv/sup m/)/sup k/m/, where u and v are linearly independent solutions of y'' + r(x)y' + q(x)y = 0.
Research Organization:
Clemson Univ., SC
OSTI ID:
7352591
Journal Information:
J. Math. Anal. Appl.; (United States), Journal Name: J. Math. Anal. Appl.; (United States) Vol. 55:1; ISSN JMANA
Country of Publication:
United States
Language:
English

Similar Records

Distorted black holes of the Einstein-Klein-Gordon system
Journal Article · Wed Sep 15 00:00:00 EDT 2004 · Physical Review. D, Particles Fields · OSTI ID:20705260

Final state problem for the cubic nonlinear Klein-Gordon equation
Journal Article · Thu Oct 15 00:00:00 EDT 2009 · Journal of Mathematical Physics · OSTI ID:21294399

Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions
Journal Article · Wed Jan 14 23:00:00 EST 2009 · Journal of Mathematical Physics · OSTI ID:21175897