skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microscopic and hydrodynamic theory of superfluidity in periodic solids

Journal Article · · Phys. Rev., B; (United States)

The microscopic theory of fourth sound and of the superfluid fraction for perfect one-component periodic solids has been derived. It is applicable to finite temperatures and is restricted to the case of well-defined excitations. One finds that the superfluid fraction is a tensor rho/sub s//sub b//sub ..beta..//rho/sub 0/ and that the fourth-sound velocity C/sub 4/ is a tensor (C/sup 2//sub 4/)/sub b//sub ..beta../ = (partialrho/sub 0//partial..mu../sub 0/)/sup -1/rho/sub s//sub b//sub ..beta../, where ..mu../sub 0/ and rho/sub 0/ are the spatially averaged values of the chemical potential (per unit mass) and of the number density. In addition, the exact nonlinearized hydrodynamics is derived, and for fourth sound is found to give agreement with the microscopic theory. Because the superfluid velocity for a periodic solid cannot be generated by a Galilean transformation, it is found that elastic waves are loaded by the average mass density of the system. This is in contrast to the result of Andreev and Lifshitz, which involves only the superfluid fraction. Therefore one cannot look to (hydrodynamic) elastic waves for an obvious signature of superfluidity. A study of the effect of a transducer indicates that fourth sound will be generated to a non-negligible extent only when the crystal is imperfect (i.e., it has vacancies, interstitials, or impurities). On the other hand, a heater might be an effective generator of fourth sound, provided that the mean free path for umklapp processes is sufficiently small. In the limit of zero crystallinity the theory shows that second sound, rather than fourth sound, occurs. Detection of superflow by rotation experiments is also considered. It is pointed out that, because the superfluid velocity is not Galilean, two-fluid counterflow does not occur. Hence, it appears that rapid angular acceleration or deceleration would be the best technique for bringing the superfluid into rotation. (AIP)

Research Organization:
Department of Physics, Texas AandM University, College Station, Texas 77843
OSTI ID:
7326112
Journal Information:
Phys. Rev., B; (United States), Vol. 15:1
Country of Publication:
United States
Language:
English

Similar Records

Second-sound studies of coflow and counterflow of superfluid {sup 4}He in channels
Journal Article · Mon Jun 15 00:00:00 EDT 2015 · Physics of Fluids (1994) · OSTI ID:7326112

On superflow in solid {sup 4}He
Journal Article · Tue Mar 01 00:00:00 EST 2005 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:7326112

Persistent currents in superfluid /sup 3/He
Journal Article · Fri Mar 01 00:00:00 EST 1985 · J. Low Temp. Phys.; (United States) · OSTI ID:7326112