Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Convergence of lattice approximations and infinite volume limit in the (lambdaphi/sup 4/-sigmaphi/sup 2/-. mu. phi)/sub 3/ field theory

Journal Article · · J. Math. Phys. (N.Y.); (United States)
DOI:https://doi.org/10.1063/1.523277· OSTI ID:7325457

By unified method we prove the convergence of the lattice approximation of the (lambdaphi/sup 4/-sigmaphi/sup 2/-..mu..phi)/sub 3/ field model with periodic, Dirichlet and Neumann boundary conditions in a finite box. This then allows us to take the inifinite volume limit of the Dirichlet states by Nelson's monotonicity argument. The model under consideration satisfies all the Wightman axioms except possibly the uniqueness of the vacuum for ..mu..=0 and the mass gap.

Research Organization:
Department of Theoretical Physics, University of Bielefeld, Germany
OSTI ID:
7325457
Journal Information:
J. Math. Phys. (N.Y.); (United States), Journal Name: J. Math. Phys. (N.Y.); (United States) Vol. 18:3; ISSN JMAPA
Country of Publication:
United States
Language:
English

Similar Records

Convergent expansion about mean field theory I. The expansion
Journal Article · Fri Oct 01 00:00:00 EDT 1976 · Ann. Phys. (N.Y.); (United States) · OSTI ID:7134730

The Wightman axioms and the Mass gap for weakly coupled (phi/sup 4/)/sub 3/ quantum field theories
Journal Article · Sun Feb 29 23:00:00 EST 1976 · Ann. Phys. (N.Y.); (United States) · OSTI ID:7279019

Verification of axioms for Euclidean and relativistic fields and Haag's theorem in a class of P(phi)$sub 2$-models
Journal Article · Mon Dec 31 23:00:00 EST 1973 · Ann. Inst. Henri Poincare, Sect. A, v. 21, no. 4, pp. 271-317 · OSTI ID:4104892