skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deformation and fracture of resin matrix composites in combined stress states

Journal Article · · J. Compos. Mater.; (United States)

The analytical prediction of elastic constants and strengths in highly anisotropic composites is complex and always requires experimental verification. This paper describes a study of the room-temperature mechanical characterization of high performance reinforced-resin composite materials. The composites were fabricated from three high strength filaments: Union Carbide's graphite fibers, Thornel 75S and Thornel 400 and duPont's organic fiber, Kevlar 49. The matrix was a filament-winding epoxy resin, Dow Chemical DER-332 room-temperature cured with Jeffamine T-403. Test specimens were thin-walled, cylindrical tubes fabricated with unidirectional (90/sup 0/ or hoop wound) or quasi-isotropic (+-30/90)/sub S/ filament orientations. Specimens were tested in uniaxial and biaxial tension; axial loads were applied with an electrohydraulic testing machine and circumferential loads by internal pressurization. Deformations were monitored with strain gages. Data from uniaxial tests and from the literature provided the elastic properties and strengths of the unidirectional composite. The stiffness data were used to calculate, from lamination theory, the macroscopic elastic stiffnesses of the quasi-isotropic tubes which were in good agreement with experimental values. Strength data are compared to four empirical strength criteria.

Research Organization:
Sandia Labs., Albuquerque, NM
OSTI ID:
7300887
Journal Information:
J. Compos. Mater.; (United States), Vol. 11
Country of Publication:
United States
Language:
English