Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Interactions of microbial biofilms with toxic trace metals; 1: Observation and modeling of cell growth, attachment, and production of extracellular polymer

Journal Article · · Biotechnology and Bioengineering; (United States)
; ; ;  [1]
  1. Cornell Univ., Ithaca, NY (United States)
Adsorbent surfaces in natural and engineered systems are frequently modified by bacterial attachment, growth of a biofilm, and bacterial production of extracellular polymer. Attached cells or sorbed polymers may alter the metal-binding characteristics of the supporting substratum and influence metal partitioning. The interdependent behavior of toxic trace metal partitioning and biofilm development requires description of the interaction between cell growth with its accompanying polymer production and metal speciation. In this article, the first of a two part series, a mechanistic model is developed to describe the growth of a film-forming bacterium which adheres to a substratum through the production of extracellular biopolymers. Each bacterial cell was modeled as a two-component structure consisting of active cell mass and biopolymer. The biopolymer component was further divided into cell-associated and dissolved categories to distinguish biopolymer which remained naturally bound to cell surfaces from that which did not. Use of this structured model permitted independent description of the dynamics of cell growth, and polymer production, both of which may influence trace metal behavior. Employing parameters obtained from independent experiments as well as published values, the model satisfactorily predicts experimental observations of bacterial growth, attachment and detachment, biopolymer production, and adsorption of polymer onto solid (glass) surfaces. The model simulated transient and steady-state biofilm systems equally well.
OSTI ID:
7272553
Journal Information:
Biotechnology and Bioengineering; (United States), Journal Name: Biotechnology and Bioengineering; (United States) Vol. 44:2; ISSN BIBIAU; ISSN 0006-3592
Country of Publication:
United States
Language:
English