Solving Sturm--Liouville eigenvalue problems. [SLEIGN, for CDC 6600 computer]
Technical Report
·
OSTI ID:7250095
A code SLEIGN is presented to compute the eigenvalues and eigenfunctions of the Sturm--Liouville problem (d/dx) (p(x) (dpsi(x)/dx)) + (q(x) + lambdar(x)) psi(x) = 0 on (a,b), A/sub 1/psi(a) + A/sub 2/p(a)psi'(a) = 0, and B/sub 1/psi(b) + B/sub 2/p(b)psi'(b) = 0. Infinite intervals and singularities of the coefficient functions at endpoints are handled automatically. An estimate of the true error in the eigenvalue is obtained with each eigenvalue. This report provides a general description of the algorithm, its implementation, and performance. It also describes and exemplifies the use of the subroutine SLEIGN. 1 table.
- Research Organization:
- Sandia Labs., Albuquerque, N.Mex. (USA)
- DOE Contract Number:
- E(29-1)-789
- OSTI ID:
- 7250095
- Report Number(s):
- SAND-76-0560
- Country of Publication:
- United States
- Language:
- English
Similar Records
SLEIGN: an eigenvalue--eigenfunction code for Sturm--Liouville problems
Sturm--Liouville eigenvalue problem
A class of Sturm-Liouville operators and approximate calculation of the first eigenvalues
Technical Report
·
Sat Dec 31 23:00:00 EST 1977
·
OSTI ID:5197405
Sturm--Liouville eigenvalue problem
Technical Report
·
Fri Dec 31 23:00:00 EST 1976
·
OSTI ID:5329494
A class of Sturm-Liouville operators and approximate calculation of the first eigenvalues
Journal Article
·
Fri Feb 27 23:00:00 EST 1998
· Sbornik. Mathematics
·
OSTI ID:21202755