skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurement of 2-carboxyarabinitol 1-phosphate in plant leaves by isotope dilution. [Spinacea oleracea; Triticum aestivum; Arabidopsis thaliana; Maize; Phaseolus vulgaris; Petunia hybrida]

Journal Article · · Plant Physiology; (United States)
DOI:https://doi.org/10.1104/pp.96.1.208· OSTI ID:7250062
; ;  [1]
  1. Univ. of Nevada, Reno (United States)

The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. {sup 14}C-labeled standard was synthesized from (2-{sup 14}C)carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO{sub 2} assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role.

OSTI ID:
7250062
Journal Information:
Plant Physiology; (United States), Vol. 96:1; ISSN 0032-0889
Country of Publication:
United States
Language:
English