Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Modeling the effects of stress on magnetization in ferromagnetic materials (abstract)

Journal Article · · Journal of Applied Physics; (United States)
DOI:https://doi.org/10.1063/1.355634· OSTI ID:7238619
 [1]
  1. Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)
So far no attempts have been made to quantitatively model the effects of changing stress under constant field. The main principle in this case is the approach of the magnetization to the anhysteretic. The anhysteretic is itself stress dependent, and therefore presents a moving target for the bulk magnetization. The displacement of the bulk magnetization in isotropic media is determined by the elastic energy supplied [Delta][ital W]=(1/[ital E])([Delta][sigma])[sup 2], where [ital E] is the elastic modulus, and [Delta][sigma] the change in stress. The displacement of the magnetization [ital D]=[ital M][sub an]([ital H],[sigma])[minus][ital M]([ital H],[sigma]) decays with [ital W] according to [ital dD]/[ital dW]=[minus][xi][ital D], where [xi] is the decay coefficient. Solving this equation gives,[ital M][sub [ital an]]([ital H],[sigma])[minus][ital M]([ital H],[sigma])=[([ital M][sub [ital an]]([ital H], [sigma])[minus][ital M]([ital H],[sigma][sub 0])]exp[([minus][xi]/[ital E])([Delta][sigma])[sup 2]], which can be rewritten in terms of the change in magnetization with stress [Delta][ital M]([ital H],[sigma],[sigma][sub 0]) the magnetomechanical effect,[Delta][ital M]([ital H],[sigma],[sigma][sub 0])=[[ital M][sub [ital an]]([ital H],[sigma])[minus][ital M]([ital H], [sigma])][l brace]1[minus]exp[([minus][xi]/[ital E])([Delta][sigma])[sup 2]][r brace]. The stress dependent anhysteretic [ital M][sub [ital an]]([ital H],[sigma]) can then be determined from the unstressed anhysteretic through the addition of the extra effective field term [ital H][sub [sigma]]: [ital H][sub [sigma]]=(3/2)([sigma]/[mu][sub 0])([ital d][lambda]/[ital dM]) so that [ital M][sub [ital an]]([ital H],[sigma])=[ital M][sub [ital an]]([ital H] + [ital H][sub [sigma]]). Through the use of the last three equations it is possible to describe the changes in magnetization.
OSTI ID:
7238619
Journal Information:
Journal of Applied Physics; (United States), Journal Name: Journal of Applied Physics; (United States) Vol. 75:10; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English

Similar Records

Magnetomechanical effect in nickel and cobalt
Journal Article · Mon Mar 31 23:00:00 EST 1997 · Journal of Applied Physics · OSTI ID:496607

On the inversion of atomic scattering data: A new algorithm based on functional sensitivity analysis
Journal Article · Thu Dec 14 23:00:00 EST 1989 · Journal of Chemical Physics; (USA) · OSTI ID:5019687

Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials
Journal Article · Mon Nov 14 23:00:00 EST 1994 · Journal of Applied Physics; (United States) · OSTI ID:7122065