skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Differential analysis of bifurcations and isolated singularities for robots and mechanisms

Journal Article · · IEEE Transactions on Robotics and Automation (Institute of Electrical and Electronics Engineers); (United States)
DOI:https://doi.org/10.1109/70.285580· OSTI ID:7235297
 [1]
  1. Australian National Univ., Canberra (Australia). Engineering Dept.

This article develops a general technique for differential analysis that can be applied to singularities of three related problems: path tracking for nonredundant robots, self-motion analysis for robots with one degree of redundancy, and displacement analysis of single-loop mechanisms. For each of these problems, the locus of displacement solutions generally forms a set of one-dimensional manifolds in the space of variable parameters. However, if singularities occur, the manifolds may degenerate into isolated points, or into curves that include bifurcation at the singular points. Higher-order equations, derived from Taylor series expansion of the matrix equation of closure, are solved to identify singularity type and, in the case of bifurcations, to determine the number of intersecting branches as well as a Taylor series expansion of each branch about the point of bifurcation. To avoid unbounded mathematics, branch expansions are derived in terms of an introduced curve parameter. The results are useful for identifying singularity type, for numerical curve tracking with continuation past bifurcations on any chosen branch, and for determining exact rate relations (i.e., velocity, acceleration, etc.) for each branch at a bifurcation. The noniterative solution procedure involves configuration-dependent systems of equations that are evaluated by recursive algorithm, then solved using singular value decomposition, polynomial equation solution, and linear system solution. Examples show applications to RCRCR mechanisms and the Puma manipulator.

OSTI ID:
7235297
Journal Information:
IEEE Transactions on Robotics and Automation (Institute of Electrical and Electronics Engineers); (United States), Vol. 10:1; ISSN 1042-296X
Country of Publication:
United States
Language:
English

Similar Records

Inverse dynamic analysis of general n-link robot manipulators
Journal Article · Tue Dec 31 00:00:00 EST 1996 · Transactions of the American Nuclear Society · OSTI ID:7235297

Singularity-consistent parameterization of robot motion and control
Journal Article · Tue Feb 01 00:00:00 EST 2000 · International Journal of Robotics Research · OSTI ID:7235297

Identification and analysis of robot manipulator singularities
Journal Article · Mon Jun 01 00:00:00 EDT 1992 · International Journal of Robotics Research; (United States) · OSTI ID:7235297