Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Dependence of the structure and electronic state of SrFeO/sub x/ (2. 5 less than or equal to x less than or equal to 3) on composition and temperature

Journal Article · · J. Solid State Chem.; (United States)
The system SrFeO/sub x/, 2.5 less than or equal to x less than or equal to 3, forms a continuous solid solution at temperatures T greater than or equal to T/sub t/(x), but a series of discrete ordered-vacancy phases SrFeO/sub 3-(1/n)/ (n = infinity, 8, 4, 2) below temperatures T/sub t/(n =8) = 523 K, T/sub t/(n = 4) = 598 K, and T/sub t/(n = 2) = 1103 K. The most probable vacancy-ordering schemes for Sr/sub 8/Fe/sub 8/O/sub 23/ (n = 8) and Sr/sub 4/Fe/sub 4/O/sub 11/ (n = 4) are proposed. Formation of fivefold-coordinated iron sites on either side of an oxygen vacancy is characteristic of both phases, which contrasts with Sr/sub 2/Fe/sub 2/O/sub 5/ (n = 2) where four-coordinated sites coexist with six-coordinated sites. The high-spin Fe/sup 4 +/(t/sub 2//sup 3/sigma*/sup 1/) configuration of SrFeO/sub 3/ (n = infinity) evolves as follows: (a) for x approx. 3, random vacancies trap Fe/sup 3 +/ ions at five-coordinated sites; (b) for n = 8, Fe/sup 4 +/ ions remain high spin, a localized-electron /sup 5/E/sub g/ configuration giving rise to a cooperative Jahn-Teller distortion with c/a less than or equal to 1 and a (220)/sub n8/ unique axis imposed by structural symmetry; fast Fe/sup 3 +/ + Fe/sup 4 +/ = Fe/sup 4 +/ + Fe/sup 3 +/ electron transfer occurs parallel to this axis at room temperature, but Fe/sup 3 +/ ions are ordered at five-coordinated sites at 4 K; (c) for n = 4, the octahedral-site Fe/sup 4 +/ ions have a low-spin t/sub 2//sup 4/ configuration with four near-neighbor Fe/sup 3 +/ ions in five-coordinated sites not making an Fe/sup 3 +/-O-Fe/sup 4 +/-O-Fe/sup 3 +/ linear chain as in n = 8. Oxygen-vacancy hopping times tau/sub h/ greater than or equal to 10/sup -8/ sec persist for 200 K above T/sub t/ in n = 2, and short-range ordering in this temperature interval is inferred. For n = 8 and n = 4, motional narrowing to single Moessbauer peak occurs within tens of degrees above T/sub t/, and this narrowing is assumed to reflect rapid electron hopping in a mixed-valence state.
Research Organization:
Kyoto Univ. (Japan)
OSTI ID:
7203244
Journal Information:
J. Solid State Chem.; (United States), Journal Name: J. Solid State Chem.; (United States) Vol. 73:1; ISSN JSSCB
Country of Publication:
United States
Language:
English