Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Seismic data, geometry, evolution, and shortening in the active Sulaiman fold-and-thrust belt of Pakistan, southwest of the Himalayas

Journal Article · · AAPG Bulletin (American Association of Petroleum Geologists); (United States)
OSTI ID:7198653
 [1]; ;  [2]
  1. Quaid-i-Azam Univ., Islamabad (Panama)
  2. Oregon State Univ., Corvallis, OR (United States)
Despite its long history of exploration, the Sulaiman fold and thrust belt is a poorly known structure and detailed structural and geochemical investigations are vital for the successful exploration, evaluation and exploitation of any hydrocarbons. Recent nappe and duplex structural models provide a framework for exploration. Surface and subsurface data from the Sulaiman fold-and-thrust belt are integrated to analyze the deep structure, tectonic, shortening, and kinematics of the Sulaiman fold-and-thrust belt at the western margin of the Indian subcontinent. Seismic reflection data show that nearly all the 10-km-thick sequence of dominantly platform (>7 km) and molasse strata is detached at the deformation front. The strata thicken tectonically to about 20 km in the hinterland without significant thrust faults in the foreland. A balanced structural cross-section suggests that structural uplift in the Sulaiman fold-and-thrust belt is a result of a thin-skinned, passive-roof duplex style of deformation. Sequential restoration of the balanced section reveals a series of structural and geometrical features including: (1) development of low-amplitude, broad concentric folds at the tip of the decollement; (2) increase in amplitude of a detachment fold to a critical level for development of ramp and duplex structures; and (3) out-of-sequence thrusting to create required critical taper for an outward translation of the foreland fold-and-thrust belt. A balanced structural cross-section 349 km long from the Sulaiman fold-and-thrust belt restores to an original length of 727 km, suggesting a maximum of 378 km of shortening since 21 Ma in the cover strata of the Indian subcontinent. Calculation of displacement rates over the Sulaiman fold-and-thrust belt (18 mm/yr) added to the resolved rate of the Chaman fault vector for the component parallel to the plate convergence direction (15 mm/yr) are close to the current India-Asia plate convergence rate (37 mm/yr). 68 refs., 13 figs.
OSTI ID:
7198653
Journal Information:
AAPG Bulletin (American Association of Petroleum Geologists); (United States), Journal Name: AAPG Bulletin (American Association of Petroleum Geologists); (United States) Vol. 78:5; ISSN 0149-1423; ISSN AABUD2
Country of Publication:
United States
Language:
English