Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Raman and photoluminescence studies of poly (p-phenylene sulfide) films

Thesis/Dissertation ·
OSTI ID:7197224
Scope and method of study. Micro-Raman and photoluminescence (PL) measurements have been performed on various poly (p-phenylene sulfide) (PPS) films to investigate the morphology and emission properties of this important polymer material. A cw argon laser at 514.5 nm was used in the Raman study while a pulsed Nd:YAG laser at 355 nm was used in the PL study. A phenylene-sulfur stretching vibration model was proposed to interpret the influence of polymer crystallinity on the Raman spectrum and to calculate the effective force constant. A lattice relaxation model was developed to explain the vibronic structure in the PL spectrum and the electron-phonon coupling in PPS. Findings and conclusions: It was found that: (i) the intensity, and the line profile of the main Raman band at 1076 cm[sup [minus]1] were related to the crystallinity of the PPS film; (ii) the effective stretching and bending force constants between the phenylene ring and the sulfur atom were determined; (iii) new Raman lines at 840 and 919 cm[sup [minus]1] were observed and assigned to the out of plane C-H bending modes; (iv) the vibronic structure with energy spacing equal to the phenylene-sulfur stretching mode was observed in low temperature PL spectrum of all PPS samples, which provided evidence that the electronic transition was coupled to the intrachain stretching in PPS; (V) the electron-phonon coupling strength and the temporary lattice distortion were determined for the unaged and aged films. The coupling strength was reduced in the aged sample possibly due to the increased [pi]-orbital overlap caused by the crosslinking which resulted from the thermal-aging process.
Research Organization:
Oklahoma State Univ., Stillwater, OK (United States)
OSTI ID:
7197224
Country of Publication:
United States
Language:
English