skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thorium utilization program. Quarterly progress report for the period ending November 30, 1975. [Fuel element crushing, solids handling, fluidized bed combustion, aqueous separations, solvent extraction, systems design and drafting, alternative head-end reprocessing, and fuel recycle systems analysis]

Technical Report ·
DOI:https://doi.org/10.2172/7196271· OSTI ID:7196271

The development program for HTGR fuel reprocessing continues to emphasize the design and construction of a prototype head-end line. Design work on the multistage crushing system, the primary and secondary fluidized bed burners, the pneumatic transfer systems, and the ancillary fixtures for semiremote assembly and disassembly is essentially complete. Fabrication and receipt of all major components is under way, and auxiliary instrumentation and support systems are being installed. Studies of flow characteristics of granular solids in pneumatic transfer systems are continuing and data are being collected for use in design of systems for solids handling. Experimental work on the 20-cm primary fluidized bed burner verified the fines recycle operating mode in runs of greater than 24 hr. Twelve leaching runs were performed during the quarter using crushed, burned-back TRISO coated ThC/sub 2/ particles and burned-back BISO coated sol gel ThO/sub 2/ particles to examine the effect of varying the Thorex-to-thoria ratio to give product solutions ranging from 0.25M to 1M in thorium. Only minor effects were observed and reference values for facility operations were specified. Two-stage leaching runs with burned-back ThC/sub 2/ indicate there are no measurable differences in total dissolution time as compared to single-stage leaching. Bench-scale tests on oxidation of HTGR fuel boron carbide at 900/sup 0/C indicates that most if not all of the carbide will be converted to boron oxide in the fluidized bed burner. Eight solvent extraction runs were completed during the quarter. These runs represented the first cycle and second uranium cycle of the acid-Thorex flowsheet. A detailed calculation of spent fuel compositions by fuel block and particle type is being performed for better definition of process streams in a fuel reprocessing facility.

Research Organization:
General Atomics, San Diego, CA (United States)
DOE Contract Number:
E(04-3)-167
OSTI ID:
7196271
Report Number(s):
GA-A-13746; TRN: 76-012996
Country of Publication:
United States
Language:
English