skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Promotion of neuritogenesis in mouse neuroblastoma cells by ganglioside GM3: Involvement of three signal pathways

Miscellaneous ·
OSTI ID:7194683

Ganglioside GM3 was extracted from human placentae and tested for neuritogenic properties towards the mouse neuroblastoma cell line Neuro-2A. GM3 (2.5 {mu}M) was found to inhibit cell growth when added exogenously to the cell culture. ({sup 3}H)Thymidine incorporation was inhibited by 49% within 6 hr. Neuritogenesis was evident within 24 hr evidenced by an increase in the number and length of neurites produced compared to control cells. An enzymatic assay for protein kinase C activity was employed to study effects of GM3 on the subcellular localization of the enzyme. Ganglioside GM3 was found to alter the subcellular localization of the phospholipid- and calcium-dependent protein kinase C. These results were confirmed using a binding assay employing the labeled phorbol ester ({sup 3}H)phorbol-12,13-dibutyrate. Finally, GM3-modulation of IP{sub 3} formation and cytosolic calcium in the Neuro-2A cells was investigated. GM3 did not alter the phosphoinositol metabolism as evidenced by IP{sub 3} formation in these cells. However, the addition of GM3 (16 {mu}M) to cells loaded with the photoprotein, aequorin, induced an increase in the intracellular calcium concentration within 2 min, which was sustained for 10 min. Removal of external calcium by chelation did not abrogate the response to GM3, indicating that calcium was being released from internal stores. The calcium influx was temporally correlated with the translocation of protein kinase C, providing a rationale whereby GM3 may induce the enzyme to translocate.

Research Organization:
Medical Univ. of South Carolina, Charleston, SC (USA)
OSTI ID:
7194683
Resource Relation:
Other Information: Thesis (Ph.D)
Country of Publication:
United States
Language:
English