skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of R5020 and RU486 binding to progesterone receptor from calf uterus

Journal Article · · Biochemistry; (United States)
OSTI ID:7191999

The authors have examined and compared the binding characteristics of the progesterone agonist R5020 (promegestrone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione) and the progesterone antagonist RU486 (mifepristone, 17..beta..-hydroxy-11..beta..-(4-(dimethylamino)phenyl)-17..cap alpha..-(prop-1-ynyl)-estra-4,9-dien-3-one) in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting K/sub d/ values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4/sup 0/C, showing saturation of binding sites at 1-2 h for (/sup 3/H)progesterone and 2-4 h for both (/sup 3/H)R5020 and (/sup 3/H)RU486. Addition of molybdate and glycerol to cytosol increased the extent of (/sup 3/H)R5020 binding. The extent of (/sup 3/H)RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the (/sup 3/H)R5020- and (/sup 3/H)RU486-receptor complexes at 37/sup 0/C. Competitive steroid binding analysis revealed that (/sup 3/H)progesterone, (/sup 3/H)R5020, and (/sup 3/H)RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S (/sup 3/H)R5020 and (/sup 3/H)RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020. The results of this study suggest that, although there are some differences in the nature of their interaction with the PR, both R5020 and RU486 bind to the same 8S receptor in calf uterine cytosol.

Research Organization:
Oakland Univ., Rochester, MI (USA)
OSTI ID:
7191999
Journal Information:
Biochemistry; (United States), Vol. 27:10
Country of Publication:
United States
Language:
English