Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Degradation and transport of AVP by proximal tubule

Journal Article · · American Journal of Physiology; (USA)
OSTI ID:7191855
; ;  [1]
  1. Northwestern Univ. Medical School, Chicago, IL (USA) Univ. of Aarhus (Denmark)
High-performance liquid chromatography (HPLC) analysis revealed that (3,4,5-{sup 3}H-Phe{sup 3},Arg{sup 8})vasopressin (({sup 3}H)AVP) was not degraded by isolated renal brush-border membranes or by a cortical lysosomal fraction in vitro; however, in the presence of 1 mM reduced glutathione, ({sup 3}H)AVP was degraded by both preparations. Renal cortical homogenates in vitro and luminal peptidases of proximal tubule in vivo degraded ({sup 3}H)AVP and in both instances yielded phenylalanine, hexapeptide AVP 1-6, heptapeptide AVP 1-7, octapeptide AVP 1-8, and two uncharacterized products X and Y. These data suggest that filtered AVP is reduced in the proximal tubule by a reduced glutathione-dependent transhydrogenase and subsequently cleaved to ({sup 3}H)Phe by tubular aminopeptidases. Following microinfusion of ({sup 3}H)AVP into proximal tubules, 15.7% of the label was absorbed. Five and fifteen minutes after infusion of ({sup 3}H)AVP, sequestration of total label in proximal tubules was 4.5 and 2.1%, respectively, and quantitative electron microscope autoradiography revealed accumulation of grains over apical endocytic vacuoles and lysosomes consistent with endocytic uptake and rapid lysosomal degradation of AVP and/or a large metabolite. Thus, enzymatic cleavage of AVP by luminal and lysosomal peptidases in proximal tubules could involve disulfide bond, C-terminal, and N-terminal loci.
OSTI ID:
7191855
Journal Information:
American Journal of Physiology; (USA), Journal Name: American Journal of Physiology; (USA) Vol. 253:6; ISSN 0002-9513; ISSN AJPHA
Country of Publication:
United States
Language:
English