Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Actinometric measurement of j[O[sub 3]-O([sup 1]D)], the solar photolysis frequency of ozone to singlet D oxygen atoms

Thesis/Dissertation ·
OSTI ID:7174435

A chemical actinometer for measuring the solar photolysis frequency of ozone to [sup 1]D oxygen atoms, j[O[sub 3]-O([sup 1]D)], has been built. Ozone, generated by oxygen flowing through an electric discharge ozonizer, is mixed with helium and nitrous oxide. The mixture of gases passes through traps into an ozone meter and into a photolysis tube that can be exposed to sunlight. Sunlight in the wavelength region less than 320 nm, photolyzes ozone into oxygen molecules and excited oxygen atoms that are in [sup 1]D state. The [sup 1]D oxygen atoms formed react with N[sub 2]O and ozone to produce oxides of nitrogen. Computer model predictions show that NO[sub 2] is the major product. The gases after photolysis pass through an ozone removing trap into the detector. NO[sub 2] in the gas mixture is detected by its chemiluminescence reaction with luminol. The instrument is able to measure j[O[sub 3]-O([sup 1]D)] with a noise level less that 5 x 10[sup [minus]1] sec[sup [minus]1]. The instrument measures j[O[sub 3]-O([sup 1]D)] with a precision of [+-]10%. Sixty days of data are taken between February 19, 1991 and May 18, 1991 in Denver, Colorado. Over 400 clear day j[O[sub 3]-O(1D)] values are correlated with effective ozone column density. Seasonal variation of j[O[sub 3]-O([sup 1]D)] is calculated from the peak hourly average values near solar noon for the months February, March, April and May. j[O[sub 3]-O([sup 1]D)] increased by 34% from February to May. j[O[sub 3]-O([sup 1]D)] measured in this study is compared with previous measurements and model calculations. Three photometers with approximate cosine response have been built and compared to the j[O[sub 3]-O([sup 1]D)] actinometer. j[[sub 3]-O([sup 1]D)] values are also compared to an output of a radiometer that measures global solar radiation. A new method to estimate j[O[sub 3]-O([sup 1]D)] on cloudy days using the global solar radiation is successfully tested.

Research Organization:
Denver Univ., CO (United States)
OSTI ID:
7174435
Country of Publication:
United States
Language:
English