skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of gibberellic acid on growth and indole metabolism of dwarf-pea plants

Thesis/Dissertation ·
OSTI ID:7140847

A study was conducted to describe the pathway of biosynthesis of indole-3-acetic acid (IAA) from tryptophan (TPP) and determine the effect of gibberellic acid (GA/sub 3/) on this system. Treatment of dwarf peas (Pisum sativum L. var Little Marvel) with 0.8 ..mu..g GA/sub 3//plant resulted in increase in plant height along with increased auxin level. A cell-free preparation of pea shoot tissue was able to convert D,L-tryptophan-3-/sup 14/C into different indole metabolites. The acidic and neutral fractions obtained after TPP incubation were subjected to thin-layer chromatography. In the neutral fraction, two peaks of radioactivity were found and these matched the Rfs for indole-acetaldehyde (IAAId) and indole-3-ethanol (IEt). One major peak of radioactivity was observed in the radiochromatograms of the acidic fraction and it corresponded with a authentic IAA. The enzymes involved in the conversion of TPP to IAA involved, in the first step, a transaminase (tryptophan aminotransferase, EC 2 x 6 x 1) reaction. The aminotransferase was purified about 82-fold by acetone precipitation and Sephadex G-200 filtration. It had a pH optimum of 8.5 and a temperature optimum of 40/sup 0/C. With ..cap alpha..-ketoglutarate a co-substrate, the enzyme transaminated aromatic as well as aliphatic amino acids including D,L-tryptophan, D,L-alanine and D,L leucine. D-TPP was found to be more effective than L-TPP as a substrate. GA/sub 3/ treatment to dwarf pea plants results in increase in the specific activity of the enzyme over the observation period. In the second step of TPP conversion, IPyA is decarboxylated by an enzyme to IAAId. In plants treated with GA/sub 3/, the enzyme activity was significantly higher three days after treatment but remained unaffected at all other stages when observations were made. The final step enzyme is a dehydrogenase that can convert IAAId to IAA in the presence of MAD as a co-factor.

Research Organization:
City Univ. of New York, NY (USA)
OSTI ID:
7140847
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English