Diffusion flame extinction in slow convenctive flow under microgravity environment
A theoretical analysis is presented to study the extinction characteristics of a diffusion flame near the leading edge of a thin fuel plate in slow, forced convective flows in a microgravity environment. The mathematical model includes two-dimensional Navier-Stokes momentum, energy and species equations with one-step overall chemical reaction using second-order finite rate Arrhenius kinetics. Radiant heat loss on the fuel plate is applied in the model as it is the dominant mechanism for flame extinguishment in the small convective flow regime. A parametric study based on the variation of convective flow velocity, which varies the Damkohler number (Da), and the surface radiant heat loss parameter (S) simultaneously, is given. An extinction limit is found in the regime of slow convective flow when the rate of radiant heat loss from fuel surface outweighs the rate of heat generation due to combustion. The transition from existent envelope flame to extinguishment consists of gradual flame contraction in the opposed flow direction together with flame temperature reduction as the convective flow velocity decreases continuously until the extinction limit is reached. A case of flame structure subjected to surface radiant heat loss is also presented and discussed.
- Research Organization:
- National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center
- OSTI ID:
- 7128282
- Report Number(s):
- N-86-28378; NASA-TM-88799; E-3137; NAS-1.15:88799; CONF-861211-16
- Country of Publication:
- United States
- Language:
- English
Similar Records
A theoretical analysis of the extinction limits of a methane-air opposed-jet diffusion flame
Propagation and diffusion-limited extinction of nonadiabatic heterogeneous flame in the SHS process
Related Subjects
400800* -- Combustion
Pyrolysis
& High-Temperature Chemistry
CHEMICAL REACTION KINETICS
COMBUSTION KINETICS
CONVECTION
DATA
ENERGY TRANSFER
FLAMES
HEAT TRANSFER
INFORMATION
KINETICS
MASS TRANSFER
MATHEMATICAL MODELS
NUMERICAL DATA
REACTION KINETICS
THEORETICAL DATA