skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: K/sup +/-induced alterations in airway muscle responsiveness to electrical field stimulation

Journal Article · · Am. J. Physiol.; (United States)
OSTI ID:7118512

The authors investigated possible pre- and postsynaptic effects of K/sup +/-induced depolarization on ferret tracheal smooth muscle (TSM) responsiveness to cholinergic stimulation. To assess electromechanical activity, cell membrane potential (E/sub m/) and tension (T/sub m/) were simultaneously recorded in buffer containing 6, 12, 18, or 24 mM K/sup +/ before and after electrical field stimulation (EFS) or exogenous acetylcholine (ACh). In 6 mM K/sup +/ E/sub m/ was -58.1 +/- 1.0 m V (mean +/- SE). In 12 mM K/sup +/, E/sub m/ was depolarized to -52.3 +/- 0.9 mV, basal T/sub m/ did not change, and both excitatory junctional potentials and contractile responses to EFS at short stimulus duration were larger than in 6 mM K/sup +/. No such potentiation occurred at a higher K/sup +/, although resting E/sub m/ and T/sub m/ increased progressively above 12 mM K/sup +/. The sensitivity of ferret TSM to exogenous ACh appeared unaffected by K/sup +/. To determine whether the hyperresponsiveness in 12 mM K/sup +/ was due, in part, to augmented ACh release from intramural airway nerves, experiments were done using TSM preparations incubated with (/sup 3/H)choline to measure (/sup 3/H)ACh release at rest and during EFS. Although resting (/sup 3/H)ACh release increased progressively in higher K/sup +/, release evoked by EFS was maximal in 12 mM K/sup +/ and declined in higher concentrations. They conclude that small elevations in the extracellular K/sup +/ concentration augment responsiveness of the airways, by increasing the release of ACh both at rest and during EFS from intramural cholinergic nerve terminals. Larger increases in K/sup +/ appear to be inhibitory, possibly due to voltage-dependent effects that occur both pre- and postsynaptically.

Research Organization:
Univ. of Cincinnati, OH
OSTI ID:
7118512
Journal Information:
Am. J. Physiol.; (United States), Vol. 61:1
Country of Publication:
United States
Language:
English