Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Aqueous solution sampling and the effects of water vapor in glow discharge mass spectrometry

Thesis/Dissertation ·
OSTI ID:7114459
Glow discharge mass spectrometry is a technique for the analysis of trace elements in solid materials. In this dissertation, the sampling of small volume aqueous solution samples has been explored. This method uses electrothermal vaporization of a solution residue for atomization, while a glow discharge provides the excitation and ionization. The main advantage of this technique over other glow discharge solution analysis schemes is the increase in sensitivity for a given sample since the analyte is atomized in a short time. The effects of the electrothermal filament current on the plasma processes were studied, since this could influence the discharge processes as well as ion transport to the mass spectrometer. Variables such as pressure, cathode-to-exit orifice distance, atomization current, and sample placement on the cathode were evaluated and the best parameters presented. The method was had relative standard deviations between 15--20%. Multi-element samples may be analyzed using either mass spectral scanning or separation of the elements by their vaporization temperature. The effects of water vapor on the processes of the glow discharge were investigated. Water vapor exhibits detrimental effects on both atomization and ionization in the plasma. Mass spectra taken with less than 5% water vapor resulted in ion signals primarily from H[sub 2]O, H[sub 3]O, ArH, and O[sub 2]. A liquid nitrogen coil was constructed to aid in the removal and control of water vapor in the ion source. Mass spectra obtained while cooling the source contained ion signals mainly from the cathode material. Different cathodes were investigated to observe the varying effects of the water vapor. When sputtering reactive metals the water problem may be minimized. Steady state and pulsed addition of water were examined to determine the processes occurring in the plasma.
Research Organization:
Florida Univ., Gainesville, FL (United States)
OSTI ID:
7114459
Country of Publication:
United States
Language:
English