Solving sparse quadratic lambda-matrix problems
Technical Report
·
OSTI ID:7092585
Methods are examined for computing all the eigenvalues in a user-supplied interval (a,b), and their associated eigenvectors, of the quadratic lambda-matrix problem (Mlambda/sup 2/ + Clambda + K)x = 0, where the matrices are sufficiently sparse that methods based on similarity transformations are inappropriate. 2 tables.
- Research Organization:
- Union Carbide Corp., Oak Ridge, TN (USA). Computer Sciences Div.
- DOE Contract Number:
- W-7405-ENG-26
- OSTI ID:
- 7092585
- Report Number(s):
- ORNL/CSD-69
- Country of Publication:
- United States
- Language:
- English
Similar Records
Solving Symmetric-Definite Quadratic $\lambda $-Matrix Problems without Factorization
Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems
Solving symmetric-definite quadratic lambda-matrix problems without factorization
Journal Article
·
Sun Feb 28 19:00:00 EST 1982
· SIAM Journal on Scientific and Statistical Computing
·
OSTI ID:6654481
Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems
Conference
·
Wed Dec 31 23:00:00 EST 1980
·
OSTI ID:6404126
Solving symmetric-definite quadratic lambda-matrix problems without factorization
Journal Article
·
Sun Feb 28 19:00:00 EST 1982
· SIAM J. Sci. Stat. Comput.; (United States)
·
OSTI ID:6506875