skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-temperature superconducting thin films and their application to superconducting-normal-superconducting devices

Miscellaneous ·
OSTI ID:7071574

The existence of the proximity effect between the high temperature superconductor YBa[sub 2]Cu[sub 3]O[sub 7] (YBCO) and normal metal thin films has been demonstrated, and this effect has been exploited to produce lithographically fabricated superconducting-normal-superconducting (SNS) Josephson junctions. Improvement of the fabrication processes has led to new methods of in-situ film growth and plasma etching of YBCO, as well a YBCO-compatible processes for the deep-ultraviolet and electron-beam lithography required to fabricate submicron device structures. This proximity effect approach helps to circumvent the short coherence length ([xi] [approximately] 3 nm) characteristic of the high T[sub c] superconductors. In a clean normal metal such as gold or silver the relevant coherence length is governed by the higher Fermi velocity and longer mean free path. A Josephson device containing a normal metal weak link can be longer than an ideal all-YBCO microbridge (dimensions comparable to [xi]). Initially, SNS devices were fabricated and showed evidence for a supercurrent through the normal region. Properly spaced Shapiro steps as a function of microwave frequency were observed. This result was evidence for a proximity effect between a normal metal and YBCO. The fabrication process was not sufficiently reproducible, so new techniques were developed. In-situ film growth and fabrication is desirable to minimize contamination of and damage to the surface of the superconductor. In-situ reactive coevaporation of YBCO was demonstrated. Patterning of these in-situ films in to a structure required the development of a low-damage reactive ion etch. New lithographic techniques were developed to minimize chemical degradation of the superconductor. Deposition of gold onto heated device structures was demonstrated to produce a superior SNS device. The application of YBCO thin films to passive microwave devices and to active superconducting circuits was evaluated.

Research Organization:
Boston Univ., MA (United States)
OSTI ID:
7071574
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English