Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A model for correlating flow boiling heat transfer in augmented tubes and compact evaporators

Journal Article · · Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States)
DOI:https://doi.org/10.1115/1.2911229· OSTI ID:7069500
 [1]
  1. Massachusetts Inst. of Tech., Cambridge (United States)
The additive model for the convective and nucleate boiling components originally suggested by Bergles and Rohsenow (1964) for subcooled and low-quality regions was employed in the Kandlikar correlation (1990a) for flow boiling in smooth tubes. It is now extended to augmented tubes and compact evaporators. Two separate factors are introduced in the convective boiling and the nucleate boiling terms to account for the augmentation effects due to the respective mechanisms. The fin efficiency effects in the compact evaporator geometry are included through a reduction in the nucleate boiling component over the fins due to a lower fin surface temperature. The agreement between the model predictions and the data reported in the literature is within the uncertainty bounds of the experimental measurements.
OSTI ID:
7069500
Journal Information:
Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States), Journal Name: Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States) Vol. 113:4; ISSN 0022-1481; ISSN JHTRA
Country of Publication:
United States
Language:
English