Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Investigation of structural information for boron-rich solids and aluminates via NMR and NQR studies

Thesis/Dissertation ·
OSTI ID:7069372
Along with NMR, Nuclear Quadrupole Resonance (NQR) has become important recently for obtaining structural information from oxide glasses. The NQR studies prove in this thesis that they provide more accurate structural information than the NMR studies have done. This study presents boron and aluminum NMR, and NQR studies for some borate glasses and compounds, icosahedral boron-rich solids, some crystalline aluminosilicates. Various borates were employed to acquire structural information as well as to determine the quadrupole parameters (the quadrupole coupling constant Qcc and the asymmetry parameter {eta}) using NQR under a guidance of NMR or vice versa. By NQR a previously unknown boron site was observed for vitreous Li{sub 2}O{center dot}B{sub 2}O{sub 3}. The NMR and NQR studies were performed on some icosachedral boron-rich solids: {alpha}-rhombohedral boron (B{sub 12}), {beta}-boron (B{sub 105}) and boron carbide (B{sub 12}C{sub 3}). Three different forms of crystalline aluminosilicate (Al{sub 2}SiO{sub 5}) were studied by NQR. The NQR study yielded more accurate values of the quadrupole parameters for {sup 27}Al than the previous NMR single crystal study did.
Research Organization:
Brown Univ., Providence, RI (United States)
OSTI ID:
7069372
Country of Publication:
United States
Language:
English