Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Growth, nutrient absorption, and moisture status of selected woody species in coal-mine spoil in response to an induced infection by the ectomycorrhizal fungus Pisolithus tinctorius

Technical Report ·
OSTI ID:7056728

In this study, nursery grown loblolly and Virginia pine seedlings infected with Pisolithus and control seedlings were outplanted on a coal mine spoil in Tennessee which had been previously hydroseeded. Granular fertilizer was applied by broadcasting to one-half of the seedlings of each ectomycorrhizal treatment at the rate of 112 kg/ha NPK. After 3 years, the survival and growth of loblolly pine infected with Pisolithus were superior to that of the control seedlings, and chemical analyses of foliar samples revealed that the seedlings with Pisolithus ectomycorrhizae had a higher foliar concentration of NO/sub 3/ and a lower concentration of Zn than the control seedlings. The survival, growth, and nutrient absorption of Virginia pine were not significantly affected by the infection with Pisolithus after 2 years, but both loblolly and Virginia pine seedlings with Pisolithus ectomycorrhizae exhibited an enhanced ability to absorb water during periods of high moisture stress, as determined by the pressure chamber technique. Fertilization substantially reduced the survival of the seedlings of both species. Sweet birch and European alder were grown under high, intermediate, and low fertility regimes in sand culture containing a mycelial inoculum of Pisolithus tinctorius for 5 months and then transplanted to coal mine spoil containing an identical Pisolithus inoculum. Control seedlings of each species were similarly grown except that no inoculum was incorporated into the potting media. The nutrient treatments initiated in the sand culture were continued throughout the study. Examinations of the roots of the sweet birch seedlings revealed that high fertility significantly reduced the development of Pisolithus ectomycorrhizae, but Pisolithus formed abundant ectomycorrhizae on the roots of sweet birch grown under the intermediate and low fertility regimes and these seedlings were significantly larger than comparable control seedlings.

Research Organization:
Oak Ridge National Lab., TN (USA)
DOE Contract Number:
W-7405-ENG-26
OSTI ID:
7056728
Report Number(s):
ORNL/TM-8359; ON: DE83000377
Country of Publication:
United States
Language:
English