PdMn and PdFe: New Materials for Temperature Measurement Near 2K
- Sandia National Laboratories
Interest in the critical dynamics of superfluid 4 He in microgravity conditions has motivated the development of new high resolution thermometry technol- ogy for use in space experiments near 2K. The current material commonly used as the temperature sensing element for high resolution thermometers (HRTs) is copper ammonium bromide [Cu(NH4)2Br42H20) or "CAB", which undergoes a ferromagnetic phase transition at 1.8K1. HRTs made from CAB have demonstrated low drift (< 10fK/s) and a temperature resolu- tion of O.lnK. Unfortunately, paramagnetic salts such as CAB are difficult to prepare and handle, corrosive to most metals, and become dehydrated if kept, under vacuum conditions at room temperature. We have developed a magnetic thermometer using dilute magnetic alloys of Mn or Fe dissolved in a pure Pd matrix. These metallic thermometers are easy to fabricate, chemically inert, and mechanically robust. Unlike salts, they may be directly soldered to the stage to be measured. Also, the Curie temperature can be varied by changing the concentration of Fe or Mn, making them available for use in a wide temperature range. Susceptibility measurements, as well as preliminary noise and drifl measurements, show them, to have sub-nK resolution, with a drift of less than 10-13 K/s.
- Research Organization:
- Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 7047
- Report Number(s):
- SAND99-1227J; ON: DE00007047
- Journal Information:
- Journal of Low-Temperature Physics, Journal Name: Journal of Low-Temperature Physics
- Country of Publication:
- United States
- Language:
- English
Similar Records
PdMn and PdFe: New materials for temperature measurement near 2 K
Development of torodial magnetic thermometry to study new phenomena associated with the superfluid transition in liquid sup 4 He