Influence of increased gas density on hydrodynamics of bubble-column reactors
Journal Article
·
· AIChE Journal (American Institute of Chemical Engineers); (United States)
- Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering
A mechanistic background to the understanding of the hydrodynamics of high-pressure bubble column reactors in both the homogeneous and heterogeneous flow regimes is discussed. An important parameter determining the stability of homogeneous bubbly flow in a bubble column is shown to be the Richardson-Zaki exponent in the bubble swarm velocity relationship V[sub swarm] = [upsilon][sub [infinity]](1 [minus] [epsilon])[sup n[minus]1]. Experimental data for the bubble swarm velocity were obtained in 0.05- and 0.1-m-dia. bubble columns with various gases (helium, air, argon, sulfur hexafluoride) using water as the liquid phase. Bubble swarm velocity data show that with increasing gas density the Richardson-Zaki exponent value decreases; physically this means that increasing gas density reduces interaction between neighboring bubbles and, consequently, reduces chance of propagation of instabilities. This rationalizes the experimental observation that the influence of increased gas density [rho][sub G] is to delay the transition from homogeneous bubbly flow to churn-turbulent flow: increasing [rho][sub G], increases the regime transition velocity. A stability analysis rationalizes the observations. The hydrodynamics of bubble columns in the churn-turbulent regime is considered to be analogous to that of a bubbling gas-solid fluidized bed, and the two-phase theory of gas-solid fluid beds is extended to describing bubble columns by identifying the dilute phase as the fast-rising large bubbles and the dense phase as the liquid phase with entrained small bubbles. A simple coalescence rationalizes experimental large-bubble holdup data.
- OSTI ID:
- 7045722
- Journal Information:
- AIChE Journal (American Institute of Chemical Engineers); (United States), Journal Name: AIChE Journal (American Institute of Chemical Engineers); (United States) Vol. 40:1; ISSN 0001-1541; ISSN AICEAC
- Country of Publication:
- United States
- Language:
- English
Similar Records
Hydrodynamics and energy consumption studies in a three-phase liquid circulating three-phase fluid bed contactor
Phase distribution in Fischer-Tropsch mimicked slurry bubble column via computed tomography
Gas holdup in three-phase immobilized cell bioreactors
Journal Article
·
Wed Jul 15 00:00:00 EDT 2009
· Experimental Thermal and Fluid Science
·
OSTI ID:21195810
Phase distribution in Fischer-Tropsch mimicked slurry bubble column via computed tomography
Journal Article
·
Sat Nov 07 19:00:00 EST 2020
· Chemical Engineering Science
·
OSTI ID:1850240
Gas holdup in three-phase immobilized cell bioreactors
Conference
·
Sat Dec 31 23:00:00 EST 1988
·
OSTI ID:5782529
Related Subjects
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
320303* -- Energy Conservation
Consumption
& Utilization-- Industrial & Agricultural Processes-- Equipment & Processes
CHEMICAL INDUSTRY
CHEMICAL REACTORS
FLOW MODELS
FLUID FLOW
FLUID MECHANICS
GAS FLOW
HYDRODYNAMICS
INDUSTRY
MATHEMATICAL MODELS
MECHANICS
320303* -- Energy Conservation
Consumption
& Utilization-- Industrial & Agricultural Processes-- Equipment & Processes
CHEMICAL INDUSTRY
CHEMICAL REACTORS
FLOW MODELS
FLUID FLOW
FLUID MECHANICS
GAS FLOW
HYDRODYNAMICS
INDUSTRY
MATHEMATICAL MODELS
MECHANICS