skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting motor neurons. Although most cases of ALS are sporadic, {approximately}10% are inherited as an autosomal dominant trait. Mutations in the CU/An superoxide dismutase gene (SOD 1) are responsible for a fraction of familial ALS (FALS). Screening our FALS kindreds by SSCP, we have identified mutations in 15 families, of which 9 have not been previously reported. Two of the new mutations alter amino acids that have never been implicated in FALS. One of them affects a highly conserved amino acid involved in dimer contact, and the other one affects the active-site loop of the enzyme. These two mutations reduce significantly SOD 1 enzyme activity in lymphoblasts. Our results suggest that SOD 1 mutations are responsible for {>=}13% of FALS cases. 16 refs., 2 figs., 2 tabs.

Authors:
; ;  [1];  [2]; ; ;  [3];  [4]
  1. McGill Univ., Montreal (Canada)
  2. Univ. of Rochester Medical Center, NY (United States)
  3. Centre de Diagnostic, Paris (France)
  4. Massachusetts General Hospital, Charlestown, MA (United States)
Publication Date:
OSTI Identifier:
70436
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Human Genetics; Journal Volume: 56; Journal Issue: 3; Other Information: PBD: Mar 1995
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; GENES; GENE MUTATIONS; PATIENTS; NERVOUS SYSTEM DISEASES; HEREDITARY DISEASES; HUMAN CHROMOSOME 21; GENETIC MAPPING; ENZYMES; AMINO ACID SEQUENCE

Citation Formats

Pramatarova, A., Han, F.Y., Rouleau, G.A., Figlewicz, D.A., Ceballos-Picot, I., Nicole, A., Meininger, V., and Grown, R.H. Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. United States: N. p., 1995. Web.
Pramatarova, A., Han, F.Y., Rouleau, G.A., Figlewicz, D.A., Ceballos-Picot, I., Nicole, A., Meininger, V., & Grown, R.H. Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis. United States.
Pramatarova, A., Han, F.Y., Rouleau, G.A., Figlewicz, D.A., Ceballos-Picot, I., Nicole, A., Meininger, V., and Grown, R.H. 1995. "Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis". United States. doi:.
@article{osti_70436,
title = {Identification of new mutations in the Cu/Zn superoxide dismutase gene of patients with familial amyotrophic lateral sclerosis},
author = {Pramatarova, A. and Han, F.Y. and Rouleau, G.A. and Figlewicz, D.A. and Ceballos-Picot, I. and Nicole, A. and Meininger, V. and Grown, R.H.},
abstractNote = {Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting motor neurons. Although most cases of ALS are sporadic, {approximately}10% are inherited as an autosomal dominant trait. Mutations in the CU/An superoxide dismutase gene (SOD 1) are responsible for a fraction of familial ALS (FALS). Screening our FALS kindreds by SSCP, we have identified mutations in 15 families, of which 9 have not been previously reported. Two of the new mutations alter amino acids that have never been implicated in FALS. One of them affects a highly conserved amino acid involved in dimer contact, and the other one affects the active-site loop of the enzyme. These two mutations reduce significantly SOD 1 enzyme activity in lymphoblasts. Our results suggest that SOD 1 mutations are responsible for {>=}13% of FALS cases. 16 refs., 2 figs., 2 tabs.},
doi = {},
journal = {American Journal of Human Genetics},
number = 3,
volume = 56,
place = {United States},
year = 1995,
month = 3
}
  • Cu/Zn superoxide dismutase (SOD) deficiency is associated with the progressive paralytic disorder familial amyotrophic lateral sclerosis (FALS). Fifteen missense mutations in the SOD gene were identified in several patients. These mutations may prevent correct promoter folding or hamper homodimer formation necessary for SOD activity. To understand the effect of the missense mutations on SOD structure and function, we used a theoretical analysis of structural effects based on two predictive methods using the modeled tertiary structure of human SOD. The first method uses the TORSO program which optimizes amino acid side-chains repacking in both wild-type and mutant SODs and calculates proteinmore » internal packing energy. The second method uses a hydrophobicity scale of the amino acid residues and considers both solvent accessibility and hydrophobic nature of residue substitutions to compute a stabilization energy change ({delta}E). These predictive methods have been tested in 187 single and multiple missense mutants of 8 proteins (T4 lysozyme, human carbonic anhydrase II, chymotrypsin inhibitor 2, f1 gene V protein, barnase, {lambda}-repressor, chicken and human lysozymes) with experimentally determined thermostability. The overall prediction accuracy with these proteins was 88%. Analysis of FALS missense mutations {delta}E predicts that 14 of 15 mutations destabilize the SOD structure. The other missense mutation is located at the homodimer interface and may hinder dimer formation. This approach is applicable to any protein with known tertiary structure to predict missense mutation effects on protein stability.« less
  • Amyotrophic lateral sclerosis (ALS) is a degenerative disease of motor neurons, causing progressive muscular atrophy, weakness, and death from respiratory failure, often within 2-3 years. Although most cases are sporadic, some 5%-10% are inherited as autosomal dominants with age-dependent penetrance. An ALS locus has been mapped to chromosome 21q, and causative mutations identified in the Cu/Zn superoxide dismutase (SOD1) gene. A majority of SOD1 mutations have been found in cases with a clear family history of ALS. However, we and others have also described SOD1 mutations in patients where the disease appears to be sporadic. This is especially true formore » the missense mutation in codon 113 of the SOD1 gene, which substitutes threonine for isoleucine (I113T). One explanation for this finding is that this codon is a mutational hot spot with sporadic cases representing new mutations. Another is that the inherited nature of the cases is disguised by the reduced penetrance of this specific mutation. We have now shown that each of six unrelated cases of I113T mutation that we have collected in the Scottish population occurs on the same genetic background. Association analysis of multiple flanking loci on chromosome 21q supports the conclusion of a founder effect, with the original mutational event occurring {ge}10 generations ago. 12 refs., 1 fig., 1 tab.« less
  • Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease due to motor neuron death in the cortex, brain stem and spinal cord. Ten percent of ALS cases are familial (FALS). Previously a subset of FALS families have been mapped to chromosome 21 and mutations in the Cu,Zn superoxide dismutase gene have been identified in those families. Nineteen different mutations at 16 distinct codons have been documented, of which 12 different mutations were identified in our 29 FALS families. These mutations account for about twenty percent of all FALS families screened. The mutations identified in our FALS families are A4V, A4T,more » G37R, G41D, H43R, G85R, G93A, E100G, L106V, I113T, L144F, and V148G. Mutation A4V is the most frequent one which occurred in 14 out of our 29 FALS families. In further screening of our FALS families, two new mutations, V14M and L84V, have been identified. Thus a total of 21 different mutations at 18 distinct codon sites have been identified in SOD1.« less
  • Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutantmore » and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.« less
  • Amyotrophic lateral sclerosis (ALS) is characterized by highly selective death of large motor neurons in the cerebral cortex and spinal cord. The familial form of ALS (FALS) accounts for approximately 10% of the cases and is transmitted in an autosomal dominant manner. Recently the defective gene causing chromosome 21-linked FALS was shown to be the Cu/Zn superoxide dismutase (SOD 1). However, the precise mechanism of neurotoxicity seen in FALS with SOD 1 mutations is still unknown. Until now all SOD 1 mutations reported were single base pair substitutions (missense). We have identified a nonsense mutation in exon 5 of themore » SOD 1 gene in a FALS kindred. This two base pair deletion provokes a frameshift and a predicted premature truncation of the protein. The region affected has a very important structural and functional role: it contains part of the active loop and is involved in dimer contact. We would predict that the loss of these structures would impair the functioning of the enzyme.« less