Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Electrostatic stabilization in sperm whale and harbor seal myoglobins

Journal Article · · Biophys. J.; (United States)

The compact, largely helical structure of sperm whale and harbor seal myoglobins undergoes an abrupt one-step transition between pH 4.5 and 3.5 as monitored by changes in either the heme Soret band absorbance or circular dichroism probes of secondary structure, for which a modified Tanford-Kirkwood theory provides identification of certain dominant electrostatic interactions responsible for the loss of stability. A similar treatment permits identification of the electrostatic interactions primarily responsible for a process in which the anchoring of the A helix to other parts of the molecule is weakened. This process is detected with both myoglobins, in a pH range approx. 1 unit higher than the onset of the overall unfolding process, through changes in the circular dichroic spectra near 295 nm which correspond to the L/sub a/O-O band of the only two tryptophan residues in these proteins, residues 7 and 14. In each case protonation of certain sites in neighboring parts of the molecule can be identified as producing destabilizing interactions with components of the A helix, particularly with lysine 16.

OSTI ID:
7032943
Journal Information:
Biophys. J.; (United States), Journal Name: Biophys. J.; (United States) Vol. 32:1; ISSN BIOJA
Country of Publication:
United States
Language:
English