Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Lesion measurement in non-radioactive DNA by quantitative gel electrophoresis

Conference ·
OSTI ID:7018990
The gel electrophoresis method developed during the past ten years in our laboratories makes possible the quantitation of UV induced pyrimidine dimers, gamma ray induced single- and double-strand breaks and many other types of lesions in nanogram quantities of DNA. The DNA does not have to be labeled with radionuclides or of a particular conformation, thus facilitating the use of the method in measuring damage levels and repair rates in the DNA of intact organisms -- including man. The gel method can quantitate any lesion in DNA that either is, or can be converted to a single- or double-strand break. The formation of a strand break produces two shorter DNA molecules for each molecule that existed before the treatment that produced the break. Determining the number of breaks, and hence the number of lesions, becomes a matter of comparing the average lengths of molecules in samples differing only in lesion-induced breaks. This requires that we determine the distribution of mass of DNA on a gel as a function of its distance of migration and also the dispersion function of its distance of migration and also the dispersion function (the relationship between molecular length and distance of migration) in the gel electrophoresis system. 40 refs., 5 figs.
Research Organization:
Brookhaven National Lab., Upton, NY (USA)
Sponsoring Organization:
DOE/ER
DOE Contract Number:
AC02-76CH00016
OSTI ID:
7018990
Report Number(s):
BNL-43231-1; BIO--4558; CONF-8910354--1; ON: DE90007891
Country of Publication:
United States
Language:
English