Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

(Impact of energy related pollutants on chromosome structure): Progress report

Technical Report ·
OSTI ID:7000000
Studies of the structure of nucleosome cores using chymotrypsin as a probe of hydrophobic residues showed that only leu-20 of H3 was readily accessible. Primary sites of cleavage of H2a, H2b, and H4 were identified. Chymotrypsin removal of specific histone termini showed that removal of the amino-terminal plus the carboxy-terminal 13 residues of H2a caused little unfolding. Using carbon-13 NMR spectroscopic, about 10% of histone amino acid residues were found to be in termini that are highly mobile. The major mobile segments were amino terminal regions of H3 and H2a, plus a carboxy-terminal region of H2a. The histone variants and developmental changes during embryogenesis of sea urchin were characterized. The early histone gene organization in L. variegatus was characterized, a genomic library was cloned in lambda phage, and several histone gene clones were selected. The nucleosome core length DNA forms crystalline phases at physiological concentrations. Microscopic and NMR spectroscopic methods were used to identify crystalline phases and to establish phase diagrams for transitions between phases as functions of DNA concentration and temperature. The sequence specificities of binding of several polycyclic aromatic chemicals to early H3 and H2a genes were examined. Chemicals studied were the bis-(o-phenanthroline) Cu(I) complex, AAAF, benzopyrene dihydrodiol epoxide, methylene blue, and acridine orange A preliminary map of binding sites of CuOP, AAAF and BPDE in and near the H3 gene showed that several sequence regions were bound preferentially by two or more of these chemicals. CuOP appeared to exhibit the most specificity. 80 refs., 4 figs.
Research Organization:
Florida State Univ., Tallahassee (USA). Inst. of Molecular Biophysics
DOE Contract Number:
AS05-78EV05888
OSTI ID:
7000000
Report Number(s):
DOE/EV/05888-8; ON: DE87003917
Country of Publication:
United States
Language:
English