Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Human placental estradiol 17. beta. -dehydrogenase: evidence for inverted substrate orientation (wrong-way binding) at the active site

Journal Article · · Biochemistry; (United States)
DOI:https://doi.org/10.1021/bi00412a036· OSTI ID:6998231
Human placental estradiol 17..beta..-dehydrogenase was affinity labeled with 17lambda-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M) or 17..beta..-estradiol 17-(bromo(2-/sup 14/C)acetate) (10 ..mu..M). The steroid bromoacetates competitively inhibit the enzyme (against 17..beta..-estradiol) with K/sub i/ values of 90 ..mu..M (17..cap alpha.. bromoacetate) and 134 ..mu..M(17..beta.. bromoacetate). Inactivation of the enzyme followed pseudo-first-order kinetics with t/sub 1/2/ = 110 min (17..cap alpha.. bromoacetate) and t/sub 1/2/ = 220 min (17..beta.. bromoacetate). Amino acid analysis of the affinity radioalkylated enzyme samples from the two bromoacetates revealed that N/sup ..pi../-(carboxy(/sup 14/C)methyl histidine was the modified amino acid labeled in each case. Digestion with trypsin produced peptides that were isolated by reverse-phase high-performance liquid chromatography and found to contain N/sup ..pi../-(carboxy(/sup 14/C)methyl)histidine. Both the 17..cap alpha.. bromoacetate and also the 17..beta.. bromoacetate modified the same histidine in the peptide Phe-Tyr-Gln-Tyr-Leu-Ala-His(..pi..CM)-Ser-Lys. Previously, the same histidine had been exclusively labeled by estrone 3-(bromoacetate) and shown not to be directly involve in catalytic hydrogen transfer at the D-ring of estradiol. Therefore, this histidine was presumed to proximate the A-ring of the bound steroid substrate. The present results suggest that the 17..cap alpha.. bromoacetate and 17..beta.. bromoacetate D-ring analogue of estradiol react with the same active site histidine residue as estrone 3-(bromoacetate), the A-ring analogue of estrone. Moreover, as each of the estradiol 17-(bromoacetates) undergoes the reversible binding step at the enzyme active site, its D-ring is in a reversed binding position relative to that of the natural substrate 17..beta..-estradiol as it undergoes catalytic hydrogen transfer at the same active site.
Research Organization:
Washington Univ. School of Medicine, St. Louis, MO (USA)
OSTI ID:
6998231
Journal Information:
Biochemistry; (United States), Journal Name: Biochemistry; (United States) Vol. 27:12; ISSN BICHA
Country of Publication:
United States
Language:
English